Home / uncensored search engine reddit / The Anatomy of a Search Engine - Stanford University

The Anatomy of a Search Engine - Stanford University - uncensored search engine reddit

The Anatomy of a Search Engine - Stanford University-uncensored search engine reddit

The Anatomy of a Large-Scale Hypertextual
Web Search Engine
Sergey Brin and Lawrence Page
Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/
To engineer a search engine is a challenging task. Search engines index tens to hundreds of
millions of web pages involving a comparable number of distinct terms. They answer tens of
millions of queries every day. Despite the importance of large-scale search engines on the web,
very little academic research has been done on them. Furthermore, due to rapid advance in
technology and web proliferation, creating a web search engine today is very different from three
years ago. This paper provides an in-depth description of our large-scale web search engine -- the
first such detailed public description we know of to date. Apart from the problems of scaling
traditional search techniques to data of this magnitude, there are new technical challenges involved
with using the additional information present in hypertext to produce better search results. This
paper addresses this question of how to build a practical large-scale system which can exploit the
additional information present in hypertext. Also we look at the problem of how to effectively deal
with uncontrolled hypertext collections where anyone can publish anything they want.
World Wide Web, Search Engines, Information Retrieval, PageRank, Google
1. Introduction
(Note: There are two versions of this paper -- a longer full version and a shorter printed version. The
full version is available on the web and the conference CD-ROM.)
The web creates new challenges for information retrieval. The amount of information on the web is
growing rapidly, as well as the number of new users inexperienced in the art of web research. People are
likely to surf the web using its link graph, often starting with high quality human maintained indices
such as Yahoo! or with search engines. Human maintained lists cover popular topics effectively but are
subjective, expensive to build and maintain, slow to improve, and cannot cover all esoteric topics.
Automated search engines that rely on keyword matching usually return too many low quality matches.
To make matters worse, some advertisers attempt to gain people's attention by taking measures meant to
mislead automated search engines. We have built a large-scale search engine which addresses many of
the problems of existing systems. It makes especially heavy use of the additional structure present in
hypertext to provide much higher quality search results. We chose our system name, Google, because it
is a common spelling of googol, or 10100 and fits well with our goal of building very large-scale search
1.1 Web Search Engines -- Scaling Up: 1994 - 2000
Search engine technology has had to scale dramatically to keep up with the growth of the web. In 1994,
one of the first web search engines, the World Wide Web Worm (WWWW) [McBryan 94] had an index
of 110,000 web pages and web accessible documents. As of November, 1997, the top search engines
claim to index from 2 million (WebCrawler) to 100 million web documents (from Search Engine
Watch). It is foreseeable that by the year 2000, a comprehensive index of the Web will contain over a
billion documents. At the same time, the number of queries search engines handle has grown incredibly
too. In March and April 1994, the World Wide Web Worm received an average of about 1500 queries
per day. In November 1997, Altavista claimed it handled roughly 20 million queries per day. With the
increasing number of users on the web, and automated systems which query search engines, it is likely
that top search engines will handle hundreds of millions of queries per day by the year 2000. The goal of
our system is to address many of the problems, both in quality and scalability, introduced by scaling
search engine technology to such extraordinary numbers.
1.2. Google: Scaling with the Web
Creating a search engine which scales even to today's web presents many challenges. Fast crawling
technology is needed to gather the web documents and keep them up to date. Storage space must be used
efficiently to store indices and, optionally, the documents themselves. The indexing system must process
hundreds of gigabytes of data efficiently. Queries must be handled quickly, at a rate of hundreds to
thousands per second.
These tasks are becoming increasingly difficult as the Web grows. However, hardware performance and
cost have improved dramatically to partially offset the difficulty. There are, however, several notable
exceptions to this progress such as disk seek time and operating system robustness. In designing Google,
we have considered both the rate of growth of the Web and technological changes. Google is designed to
scale well to extremely large data sets. It makes efficient use of storage space to store the index. Its data
structures are optimized for fast and efficient access (see section 4.2). Further, we expect that the cost to
index and store text or HTML will eventually decline relative to the amount that will be available (see
Appendix B). This will result in favorable scaling properties for centralized systems like Google.
1.3 Design Goals
1.3.1 Improved Search Quality
Our main goal is to improve the quality of web search engines. In 1994, some people believed that a
complete search index would make it possible to find anything easily. According to Best of the Web
1994 -- Navigators, "The best navigation service should make it easy to find almost anything on the
Web (once all the data is entered)." However, the Web of 1997 is quite different. Anyone who has used
a search engine recently, can readily testify that the completeness of the index is not the only factor in
the quality of search results. "Junk results" often wash out any results that a user is interested in. In fact,
as of November 1997, only one of the top four commercial search engines finds itself (returns its own
search page in response to its name in the top ten results). One of the main causes of this problem is that
the number of documents in the indices has been increasing by many orders of magnitude, but the user's
ability to look at documents has not. People are still only willing to look at the first few tens of results.
Because of this, as the collection size grows, we need tools that have very high precision (number of
relevant documents returned, say in the top tens of results). Indeed, we want our notion of "relevant" to
only include the very best documents since there may be tens of thousands of slightly relevant
documents. This very high precision is important even at the expense of recall (the total number of
relevant documents the system is able to return). There is quite a bit of recent optimism that the use of
more hypertextual information can help improve search and other applications [Marchiori 97] [Spertus
97] [Weiss 96] [Kleinberg 98]. In particular, link structure [Page 98] and link text provide a lot of
information for making relevance judgments and quality filtering. Google makes use of both link
structure and anchor text (see Sections 2.1 and 2.2).
1.3.2 Academic Search Engine Research
Aside from tremendous growth, the Web has also become increasingly commercial over time. In 1993,
1.5% of web servers were on .com domains. This number grew to over 60% in 1997. At the same time,
search engines have migrated from the academic domain to the commercial. Up until now most search
engine development has gone on at companies with little publication of technical details. This causes
search engine technology to remain largely a black art and to be advertising oriented (see Appendix A).
With Google, we have a strong goal to push more development and understanding into the academic
Another important design goal was to build systems that reasonable numbers of people can actually use.
Usage was important to us because we think some of the most interesting research will involve
leveraging the vast amount of usage data that is available from modern web systems. For example, there
are many tens of millions of searches performed every day. However, it is very difficult to get this data,
mainly because it is considered commercially valuable.
Our final design goal was to build an architecture that can support novel research activities on
large-scale web data. To support novel research uses, Google stores all of the actual documents it crawls
in compressed form. One of our main goals in designing Google was to set up an environment where
other researchers can come in quickly, process large chunks of the web, and produce interesting results
that would have been very difficult to produce otherwise. In the short time the system has been up, there
have already been several papers using databases generated by Google, and many others are underway.
Another goal we have is to set up a Spacelab-like environment where researchers or even students can
propose and do interesting experiments on our large-scale web data.
2. System Features
The Google search engine has two important features that help it produce high precision results. First, it
makes use of the link structure of the Web to calculate a quality ranking for each web page. This ranking
is called PageRank and is described in detail in [Page 98]. Second, Google utilizes link to improve
search results.
2.1 PageRank: Bringing Order to the Web
The citation (link) graph of the web is an important resource that has largely gone unused in existing
web search engines. We have created maps containing as many as 518 million of these hyperlinks, a
significant sample of the total. These maps allow rapid calculation of a web page's "PageRank", an